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Abstract. The eigenvalues of the hyperspherical billiard are calculated in the semiclassical
approximation. The eigenvalues where this approximation fails are identified and found to be
related to caustics that approach the wall of the billiard. The fraction of energy levels for which the
semiclassical error is larger than some given value is calculated analytically (and tested numerically)
and found to be independent of energy. The implications for other systems, in particular integrable
ones, are discussed.

1. Introduction

Exact solutions to physical problems are rare. In most cases one has to resort to approximate
solutions. In quantum mechanics the Wentzel–Kramers–Brillouin (WKB) method, along with
perturbation theory, is probably the most common method used to obtain approximate solutions
(for reviews, see [1–3]). The WKB method is a formal ¯h expansion for the wavefunction, that
expresses its rapid oscillations in the semiclassical limit. Using this expansion combined with
an appropriate boundary condition results in an approximate quantization condition. Therefore,
high-order approximations for the wavefunction can be used to improve the accuracy of the
eigenvalues. A systematic way to obtain approximate quantum eigenvalues using the WKB
method was first developed by Dunham [4], improved by Bender and co-workers [5] and is
summarized in [6]. In some cases the resulting series for the eigenvalues converge to the exact
ones, but generally the resulting expansion will be an asymptotic series.

A surprisingly small number of papers were devoted to the accuracy of semiclassical
methods, and even less for high orders or high-dimensional systems. A naive estimate for the
accuracy of semiclassical methods is that the leading semiclassical approximation is accurate
to orderh̄ and therefore the resulting error is of order ¯h2. For example, substitution of the
Van Vleck propagator into Schrödinger’s equation will not solve the equation exactly, and a
remainder of order ¯h2 will result [7]. The mean level spacing scales as ¯hD, whereD is the
dimension of the system, thus the relative error scales as ¯hD−2 and the semiclassical method
fails for high-dimensional systems. The prefactor of the semiclassical error is important (in
particular forD = 2), since individual energies can be found semiclassically only if the error
is less than the mean level spacing. For integrable systems the WKB expansion enables one
to find analytic estimates for the error in the energies as is demonstrated for a class of such
systems in this paper. In addition, it may also shed light on the accuracy of the semiclassical
approximation for other dynamical systems. The common argument for the failure of the
semiclassical approximation for chaotic systems inD > 2 and possibly forD = 2 was
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recently challenged by Primack and Smilansky [8]. For chaotic systems energy is the only
quantum number and this is the only identity of a level. The mean level spacing is determined
by the smooth Weyl term. This term can be determined for billiards to a high order in Planck’s
constanth̄. Primack and Smilansky introduced a method to evaluate the error in the energy
levels resulting from the fact that oscillatory terms are known only to the leading order in ¯h.
They concluded that the error in the evaluation of single levels compared with the mean level
spacing diverges, at most, as| ln h̄| in the limit h̄ → 0. Dahlqvist [9] estimated effects of
diffraction for theD = 2 Sinai billiard and concluded that ignoring diffraction, as is done in
the standard semiclassical approximation, may result in errors at least of the order of the mean
level spacing.

Here we study the much simpler case of integrable systems when an expression for the
energy levels can be obtained to arbitrary order in ¯h and the levels that are poorly approximated
in the leading order of the semiclassical approximation can be characterized. An estimate for
the error of the semiclassical quantization for the hyperspherical billiard, that is a generalization
of the circle billiard to arbitrary dimensionD, is obtained. It was proposed as a model for the
nucleus, where theAnucleons are described by a single point in the 3A-dimensional space [10].
The circular billiard was the subject of several works regarding the semiclassical accuracy.
Prosen and Robnik explored the error for the energies of the circle billiard numerically [11].
They found that the mean error increases with the energy, and concluded that the semiclassical
approximation fails in this simple system. Boasman used the boundary integral method to find
the quantization error for several billiards, including the circle billiard [12]. The error was
found to be a small fraction of the mean level spacing for general two-dimensional billiards.
For the circle billiard he found that for most of the energies the semiclassical error is a
constant, which is a small fraction of the mean level spacing. There were large errors for
some eigenenergies, the corresponding eigenfunctions were found to be affected by caustics,
and it was stated that the fraction of these poorly approximated states decreases with energy.

Following earlier work of Agam [13] we use a certain WKB expansion, keeping the
classical quantities fixed, that gives identical quantization condition to the one obtained from
the Debye expansion of the Bessel function. This expansion enables us to estimate the fraction
of states where the error in the leading semiclassical approximation exceeds some value. The
relation to caustics turns out to be transparent. For integrable systems this is a better measure
than the mean error since some eigenenergies, that can be clearly characterized, may have
extremely large errors. The reason is that for integrable systems, in contrast to chaotic ones,
there are other quantum numbers in addition to the energy. These help to characterize the groups
of quantum eigenstates that are badly approximated in the leading order of the semiclassical
approximation.

The semiclassical expansion for the eigenvalues of the hyperspherical billiard to second
order inh̄ is derived in section 2, with the help of the standard semiclassical expansion, as well as
the Debye expansion of the Bessel functions. In section 3 the density of eigenvalues where the
semiclassical approximation is poor (a term that is defined in that section) is derived analytically
and tested numerically. The results are summarized in section 4 and the implications for other
systems are discussed.

2. The WKB expansion for the hyperspherical billiard

In this section the semiclassical quantization for the hyperspherical billiard is developed up
to second order in ¯h. First, a short introduction to a systematic WKB expansion for one-
dimensional problems is given. Then the Debye expansion for the Bessel function is used
to derive the second-order quantization condition. This derivation is much simpler than the
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derivation that uses a systematic WKB expansion. In order to verify that the quantization
condition derived from the Debye expansion of the Bessel function is indeed a result of a
semiclassical expansion, a WKB series is developed for the radial wavefunction. Quantization
of this series indeed gives the same quantization condition that was obtained using the Debye
series (at least up to second order).

A scheme for quantization using the high-order WKB expansion is known, at least for an
ordinary differential equation such as the equations found for separable Hamiltonians [4–6,14].
For one-dimensional systems the Schrödinger equation is[

− h̄
2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x). (1)

The wavefunction is written in the form

ψ(x) = A exp

(
i

h̄
σ (x)

)
(2)

and the phase is expanded in powers of ¯h

σ(x) =
∞∑
k=0

(
h̄

i

)k
σk(x) (3)

whileA is a normalization constant. The Schrödinger equation can be solved order by order
in h̄ leading to a recursion relation for the expansion functions [4–6]

σ ′20 = 2m(E − V (x))
n∑
k=0

σ ′kσ
′
n−k + σ ′′n−1 = 0.

(4)

The quantization condition is derived from the requirement that the wavefunction is single
valued:

∞∑
k=0

(
h̄

i

)k ∮
dσk = 2πh̄n. (5)

The first odd termσ1 has the form of a logarithmic derivative, dσ1 = − 1
4 d(ln σ

′2
0 ). Each

turning point gives a simple zero ofσ
′2
0 , and the contour integral forσ1 counts these zeros

and results in the Maslov index. All of the other odd terms are real, and usually without cuts
in the complexx plane. Thus, these terms do not contribute to the quantization condition [5].
Therefore, the quantization condition becomes

∞∑
k=0

(
h̄

i

)2k ∮
dσ2k = 2πh̄(n +m/4) (6)

wherem is the Maslov index to be evaluated later (for the simple problem with two turning
points,m is just 2, the number of zeros ofσ

′2
0 ) . The fact that only even terms contribute to the

quantization makes this quantization method efficient since the correction to the eigenvalues
will be smaller by a factor of ¯h2 instead ofh̄. This motivates us to transform the radial
differential equation to a form without a first derivative.

The specific problem that is studied in this work is theD-dimensional hyperspherical
billiard, namely a free particle inside aD-dimensional ball (R2 >

∑D
i=1 x

2
i ) with Dirichlet

boundary conditions. Generalized spherical coordinates will be most convenient to solve the
Schr̈odinger equation. TheD-dimensional Hamiltonian reduces to the Laplacian operator

H = − h̄
2

2m

(
∂2

∂r2
+
D − 1

r

∂

∂r
+
1s

r2

)
(7)
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with the boundary conditionψ(R) = 0 on the wavefunctions. The generalized angular
momentum operator is1s and its eigenvalues are−l(l +D − 2) [15]. The radial and angular
variables can be separated asψ = R(r)χ(�). For the hyperspherical billiard the radial
Schr̈odinger equation is

R′′(r) +
D − 1

r
R′(r)− l(l +D − 2)

r2
R(r) +

2mE

h̄2 R(r) = 0. (8)

The exact solution can be easily obtained using the fact that the radial equation (8) can be
reduced to the Bessel equation of orderν, namely

u2J ′′ + uJ ′ + (u2 − ν2)J = 0 (9)

whereR(u) = u
2−D

2 J (u), ν = l + D−2
2 andu =

√
2mE
h̄2 r. The solutions areJν , the Bessel

functions of the first kind of orderν, and the quantization condition is

Jν

(√
2mE

h̄2 R

)
= 0. (10)

This result is exact. The dimensionless variables

z =
√

2mER

Lsc

ν = Lsc

h̄
= l +

D − 2

2

(11)

are introduced for simplicity. It is obvious thatz > 1.
In order to make connection with the semiclassical expansion it is useful to introduce a

large-order expansion of the Bessel function, since for small ¯h the orderν is large. This is the
Debye asymptotic expansion:

Jν(νz)ν→∞ ∼
(

2

πν
√
z2 − 1

)1
2
[

cosζ
∞∑
m=0

(−1)m0(2m + 1
2)a2m

0( 1
2)

(
2

ν
√
z2 − 1

)2m

+ sinζ
∞∑
m=0

(−1)m0(2m + 3
2)a2m+1

0( 1
2)

(
2

ν
√
z2 − 1

)2m+1]
(12)

where ζ = ν[
√
z2 − 1 − arccos( 1

z
)] − π

4 and a0 = 1 , while a1 = 1
8 + 5

24
1

z2−1, and

a2 = 3
128 + 77

576
1

z2−1 + 385
3456

1
(z2−1)2 , . . . [16].

Semiclassical quantization, using the Debye expansion, is performed in orders of ¯h, by
requiring that the wavefunction has a zero atr = R, order by order in1

ν
. Thus, to second order

the quantization condition is:

cosζ +
1

ν
√
z2 − 1

(
1

8
+

5

24

1

z2 − 1

)
sinζ = 0. (13)

First, we solve for the first-order condition and correct it perturbatively. Defineζ0 = ζ(z0)

as the leading-order solution. It satisfies

cosζ0 = 0. (14)

The second-order solution can be expanded around the first-order one:z = z0 + δz. The term
δζ = ζ(z0 + δz)− ζ(z0) is of the order1

ν
and therefore small. Substituting in (13) one finds

δζ = 1

ν
√
z2 − 1

(
1

8
+

5

24

1

z2 − 1

)
. (15)
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This last expression can be given in terms of the first-order solutionsz0 or the second-order
ones since the difference is of higher order in1

ν
. The last step is to rewrite the first-order

condition as cosζ0 = cos(ζ − δζ ) = 0. This results in

ν

(√
z2 − 1− arccos

(
1

z

))
− 1

ν
√
z2 − 1

(
1

8
+

5

24

1

z2 − 1

)
= π

(
n +

3

4

)
. (16)

This is the second-order semiclassical quantization condition. For every pair of quantum
numbers(n, ν) one can solve forz and obtainEsc(n, ν). Since the quantization condition is
determined by only two quantum numbers, the problem behaves like a system of two degrees
of freedom, if one chooses to ignore degeneracies. The reason for denoting this quantization
condition as a second-order one will become clear shortly.

We turn now to apply the systematic semiclassical expansion to (8). Our goal is to show
that the quantization condition that was obtained from the asymptotic expansion of Bessel
functions coincides with the one obtained from a WKB expansion. This equation has a first-
order derivative and, therefore, does not have the form of the one-dimensional Schrödinger
equation (1). To exploit the formal WKB expansion described above, one has to eliminate the
first-order derivative from the equation. Substitution of

R(r) = r 1−D
2 φ(r) (17)

in (8) leads to the following equation forφ(r):

− h̄
2

2m
φ′′(r) +

h̄2

2mr2

[(
l +

D − 2

2

)2

− 1

4

]
φ(r) = Eφ(r). (18)

Thus, after this substitution the resulting Schrödinger equation is similar to that of a
system with one degree of freedom and the WKB method will give better results. The angular
momentum that appears in this equation is the semiclassical one (see (11) and appendix A), as
opposed to the exact angular momentum ¯h

√
l(l +D − 2)as is explained in what follows. These

differ by an extra term that vanishes in the limit ¯h→ 0. That gives one some freedom in defining
the semiclassical variables. Thus, for example, we can define the limit as ¯h→ 0 whileE and
L2 = h̄2l(l +D−2) are constants. This prescription for the semiclassical limit is problematic,
since the form of the resulting leading-order wavefunction near zero and at infinity differs from
the one of the exact wavefunction. This problem is known for the spherical case (D = 3),
where in the leading order the exact angular momentum is replaced by the semiclassical one,
a modification introduced by Langer [1, 17]. For theD-dimensional generalized angular
momentum the analogue is the replacement of(l + D−2

2 )2 − 1
4 by (l + D−2

2 )2. Therefore, we
define the semiclassical limit as the limit where ¯h → 0 whileE andLsc = h̄(l + D−2

2 ) are
constant. The difference between these definitions of the angular momentum vanishes in the
limit h̄→ 0. As a result, we apply the WKB approximation to the following equation:

−h̄2φ′′(r) = 2m

(
E − L

2
sc − h̄2

4

2mr2

)
φ(r). (19)

Using the expansion (3) for the wavefunction we find that the recursion relation (4) changes to

σ ′20(r) = 2m

(
E − L2

sc

2mr2

)
n∑
k=0

σ ′kσ
′
n−k + σ ′′n−1 = −

1

4r2
δn,2.

(20)
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The first-order contribution to the quantization condition is obtained from the zeroth order
of (20)∮
σ ′0 dr = 2

∫ R√
L2
sc

2mE

1

r

√
2mEr2 − L2

sc dr = 2h̄ν

[√
z2 − 1− arccos

(
1

z

)]
. (21)

The variablez (see equation (11)) is the ratio between the radius of the billiard and the minimal
distance of the classical orbit from the origin, or the radius of the caustic. Therefore, ifz is
close to 1 then the state is more affected by caustics and the semiclassical approximation
deteriorates. The reason is that the wavefunction of these states is close to both the caustic and
to the hard wall where the pure semiclassical approximation fails. The next term gives us the
Maslov index. The integration overσ ′1 gives an extra phase ofπ2 due to the turning point at

r =
√

L2
sc

2mE (resulting in a zero ofσ
′2
0 as discussed after (5)). We also have to include the hard

wall at r = R. To do this correctly one has to build the wavefunction from the sum of two
solutions in such a way that they cancel each other at the wall. The result is that the reflected
wave acquires an extra phase ofπ , therefore the total Maslov index is just 3. Consequently,
the quantization condition in the leading order is

ν

[√
z2 − 1− arccos

(
1

z

)]
= π

(
n +

3

4

)
. (22)

In appendix A it is derived in the framework of the ‘EBK quantization’ by direct action
quantization.

Our goal is now to obtain the second-order semiclassical condition. A straightforward
calculation leads to

σ ′2(r) =
L2
sc(L

2
sc − 12mEr2)

8r(2mEr2 − L2
sc)

5/2
− 1

8r
√

2mEr2 − L2
sc

. (23)

The contour integral overσ ′2 is calculated in appendix B, and the result is∮
σ ′2 dr = 1

4h̄ν
√
z2 − 1

+
5

12h̄ν(z2 − 1)3/2
. (24)

Using the quantization condition (6) up to the second order∮
(σ ′0 − h̄2σ ′2) dr = 2πh̄

(
n +

m

4

)
(25)

and (21), one obtains the second-order quantization condition

ν

(√
z2 − 1− arccos

(
1

z

))
− 1

ν
√
z2 − 1

(
1

8
+

5

24

1

z2 − 1

)
= π

(
n +

3

4

)
. (26)

This condition is identical to (16), obtained from the Debye expansion. IfLsc is kept fixed in
the semiclassical limit then the limit ¯h→ 0 is equivalent toν →∞. Note that ifz is not too
close to 1 the first term is much larger then the second one and dominates the result.

It was demonstrated explicitly that the Debye series and the WKB method lead to the same
quantization condition up to the second order. Furthermore, these expansions are valid in the
samelimit. Therefore, we expect that these expansions give identical results in any order. This
enables one to use the Debye asymptotic expansion, in this case, to obtain estimates for the
semiclassical error. This is the subject of the next section.

Before we continue, it is worthwhile briefly discussing the semiclassical angular
momentumLsc. In appendix A we calculated the semiclassical eigenvalues of the generalized
angular momentum using first-order WKB. One may ask whether it is possible to obtain the
exact form of the angular momentum eigenvalues from a WKB expansion. It turns out that this
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is indeed the case. The WKB approximation for the three-dimensional angular momentum
was treated by Robnik and Salasnich [18]. They computed several of the leading terms in the
series for the angular momentum eigenvalues, and conjectured the general form of this series.
This conjecture was later proved by Salasnich and Sattin [19]. The generalization for high-
dimensional systems is not difficult and requires only minor changes in the differential equation
and the WKB series. The details are presented in appendix C. The convergent series leads
to the correct eigenvalues for the generalized angular momentum (namely, ¯h

√
l(l +D − 2)),

while the first order in the WKB expansion isLsc = h̄(l + D−2
2 ).

3. The semiclassical error for hyperspherical billiards

The leading semiclassical eigenvalues correspond to the zeros ofJ (0)ν (νz), the leading
term in the Debye asymptotic expansion. HereJ (i)ν (νz) denotes theith-order term in this
expansion. Let1z = z(Eex)− z(Esc), then to the leading order in this asymptotic expansion

1z = J (0)ν (νz)−Jν (νz)
J
′(0)
ν (νz)

' − J (1)ν (νz)

J
′(0)
ν (νz)

[12, 13], whereJ ′(0)ν (νz) is the first derivative ofJ (0)ν (νz)

with respect toz. From (12) one finds,1z = δζ

(
dζ0
dz0
)
, wherez0 is the leading-order solution

satisfyingJ (0)ν (νz0) = 0 (see (14) and (15). The result can also be obtained directly from
these equations).

If the difference1z is small then1z
z
= 1E

2E . Using (11),

|1E| ' h̄2

mR2

z2

z2 − 1

[
1

8
+

5

24

1

z2 − 1

]
(27)

that is correct in the leading order in ¯h. Note that the error1E is independent of the number of
degrees of freedomD. In the limit z→ 1 this expression diverges. This divergence is related
to the fact that in this limit the caustic approaches the wall and the classical trajectories on the
quantized torus are always adjacent to the caustic and to the hard wall. The approximation is
best in the limitz → ∞. In this limit the angular momentum contribution to the energy is
negligible, and the problem is effectively one-dimensional.

To estimate the accuracy of the approximation it may be more meaningful to measure the
error in units of the mean level spacing1. In theD-dimensional hyperspherical billiard the
leading order in the mean level spacing is given by the Weyl formula

1 ' (2π)Dh̄D

mR2V 2
DDL

D−2
sc

1

zD−2
(28)

whereVD = π
D
2

0(1+D2 )
is the volume of theD-dimensional sphere of unit radius. With (27)

and (28) the semiclassical error is

|1E|
1
' DLD−2

sc

02(1 + D
2 )2

D

zD

z2 − 1

[
1

8
+

5

24

1

z2 − 1

]
1

h̄D−2 . (29)

In the calculation of the mean level spacing1, the levels were weighted with their degeneracy,
leading to a large level density, resulting in a very small mean level spacing. The divergence
of |1E|

1
for D > 2 in the limit h̄ → 0 ( Lsc andz fixed) andz → ∞ ( Lsc andh̄ fixed) is a

result of the rapid increase of the number of levels in these limits.
The hyperspherical billiard exhibits a high degree of symmetry. Therefore, there are only

two quantum numbers,(n, l), that determine the quantization condition. As a result, if levels
are not weighted by their degeneracies the density of the degenerate energy levels is quasi two
dimensional. Consequently, if the number of states that are affected by caustics is small, then
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one can use the WKB method to determine single energy levels. Knowledge of the relative
number of states that are badly approximated is crucial here. If such states are common than
the semiclassical approximation will fail. In what follows the fraction of states that are badly
approximated by the WKB method is estimated.

One can decompose the total spectrum using the angular momentum quantum number.
Each sub-spectrum is a series of eigenvalues that depend on the quantum numbern. The
density of these states with respect to the energy can be approximated from the quantization
condition (22)

ρn '
(
∂n

∂E

)
= ν

2πE

√
E − ε(ν)
ε(ν)

(30)

whereε(ν) = h̄2ν2

2mR2 . The decomposed spectrum is not very interesting, since our purpose
is to find what is the total fraction of states that are badly approximated irrespective of the
other quantum numbers. For this, the spectrum can be constructed by adding the contributions
from different angular momenta. It is important to understand that when we sum overν and
the energy is kept fixed, we actually sum over the different quantum states(ν, n) with energy
nearE. If the sum is over all the possible values ofν then one is counting all the possible
states and will get the total density of states. If one wants to sum only the states that are badly
approximated one should sum only the states that satisfy the condition 16 z 6 1/α, whereα
is a measure for the maximally allowed error. From (27) it is clear that|1E| is monotonically
decreasing withz. To find the density of badly approximated states one sums only values
of ν satisfying this inequality. Replacing the restricted sum

∑′
by an integral and changing

variables toε, leads to

ρ '
′∑
ν

ν

2πE

√
E − ε(ν)
ε(ν)

' mR2

2πh̄2

∫ E

α2E

√
E − ε
ε

dε

E
. (31)

The resulting density of badly approximated states is

ρ ' mR2

2πh̄2

[
arccosα − α

√
1− α2

]
. (32)

The result depends only onα, which is a measure of the error but does not depend on energy.
Thus, the probability that a state is badly approximated by the WKB method does not depend
on the energy of the state. It is important to notice that this expression is useful only in the limit
α � 1. Whenα ' 1 the connection between the allowed error andα is not accurate since the
various terms in the Debye series are of comparable magnitude and the expansion cannot be
terminated. Indeed, when all of the states are included, (forα = 0 any state is considered to
be badly approximated), the density of all the states ismR2

4h̄2 , as expected, since this is the total
density of states according to the Weyl formula in two dimensions (the double degeneracy of
states with positive and negative angular momentum quantum numbers is ignored here).

To verify these results we computed the first 125 336 exact and semiclassical levels in
theD = 4 dimensional hyperspherical billiard numerically. A convenient set of units is
2m = h̄ = R = 1. The error in each eigenvalue was computed directly from comparison
between the exact energy levels computed from (10) and their semiclassical approximation
computed from (22). A set ofα values was chosen. Each value ofα defines a semiclassical
error by (27), withz = 1

α
. Then, the density of states with error larger than this semiclassical

error was computed by counting the number of such states in an energy interval which is
much larger than the mean level spacing but small enough not to smear any possible energy
dependence. This number is just the density of badly approximated states times the width of the
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Figure 1. The density of badly approximated states (solid curve—the approximation, circles—
numerical results).

energy interval. For eachα the density of badly approximated states was found to be constant
when the energy was varied, as expected from (32). The value of this density was compared
with the density predicted by (32), and both are presented in figure 1. The approximation (32)
was found to be excellent.

It was found that using the fact that the system is integrable and the knowledge of its
degeneracy, we can treat the spectrum of the hyperspherical billiard as two dimensional. The
density of badly approximated states was calculated and found to be energy independent,
in contrast to a previous statement [12]. Only in the limit where the angular momentum
is negligible there are no large errors in quantization, since the system is effectively one-
dimensional.

4. Discussion and conclusions

The accuracy of the semiclassical approximation was studied for the hyperspherical billiard.
The approximation was found to fail for energies corresponding to states that are localized on
tori, such that the caustic is close to the wall. As the caustic approaches the wall the region in
space where the semiclassical approximation for the wavefunction is justified shrinks, and the
quality of this approximation deteriorates. The semiclassical approximation for eigenvalues
can be arbitrarily bad (forz ' 1, in our case). For this reason the average semiclassical error is
meaningless since it may be dominated by few large contributions. It is much more reasonable
to calculate the fraction of badly approximated states, namely the fraction of states where the
semiclassical error exceeds some value. The density of such states was found to depend only on
one parameter that measures the ratio between the angular momentum and its maximal possible
classical value for a given energy (the parameter was denoted byα, and the regime where the
semiclassical approximation fails is 1< z < 1

α
). The semiclassical error (27) depends only
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on z and not on the energy. Therefore, we concluded that the density of poorly approximated
eigenvalues characterized byα is independent of energy. The semiclassical approximation
doesnot improve as the energy increases, in contrast to common belief (stated, for example,
in [12]). Lazutkin found that convex billiards have tori of the KAM type along the boundary.
He also proved that it is possible to use a WKB-like method to obtain approximate solutions
and energy levels on these tori [20]. For these states there is a caustic near a hard wall and we
expect that the energy levels will be badly approximated.

The system that was studied in this work is somewhat special because of its high degree
of degeneracy. Since the symmetries are respected by the semiclassical approximation, the
levels calculated in this approximation have the same degeneracy as the exact ones. Therefore,
for such a system, it is meaningless to compare the semiclassical error with the mean level
spacing that is inversely proportional to the total number of energy levels. In such a situation
it is more meaningful to consider the error within each group characterized by given constants
of motion apart from the energy.

In the present work the badly approximated states were found within a finite energy range
for values of angular momentum wherez ' 1, that is when the caustic is close to the wall,
and the classically allowed region is narrow. Such a situation can occur for many integrable
systems in dimensionD > 1. Fixing the action variables, except the energy, the classically
allowed regions in space may be very narrow and they are bounded by caustics or boundaries
(like the hard wall in the present work). Such regions may occur near extrema of the energy,
subject to the constraint that the other quantum numbers are kept fixed. For wavefunctions
localized in these narrow regions the semiclassical approximation is poor. Typically, such states
are expected for various values of the quantum numbers, (excluding the energy), and these
accumulate to the density of the poorly approximated energy levels. As in the present work,
one expects a finite fraction of badly approximated states. The semiclassical approximation for
several states may be extremely bad making the average error meaningless. In other words, it is
expected that the semiclassical approximation will fail for well defined groups of states and the
fraction of such states, rather than the mean semiclassical error, is a good measure of the quality
of the semiclassical approximation. One can find such states in some rotationally invariant
two-dimensional systems with some attractive potential (for example, the circle billiard with
the hard wall replaced by a soft one that is sufficiently steep). The badly approximated states
will be the lowest states in the radial potential well formed by the attractive potential and the
angular momentum. To our understanding in general the density of badly approximated states
may depend on energy, in contrast to the situation in the present work. The characterization
of this dependence should be the subject of further studies.

The results of this work may be relevant for mixed systems, since some of the states are
localized in the regular regions. For chaotic systems and for the chaotic component of mixed
systems, there are no caustics and the wavefunctions usually spread over all the chaotic region.
The energy is the only identity of an eigenstate, therefore, the results of this work may not be
of direct relevance for such systems and the mechanism for the destruction of the semiclassical
approximation is different there.

Alonso and Gaspard computed the correction to the Gutzwiller trace formula for
billiards [21]. The correction is complicated but some of its parts have geometrical meaning.
One term is proportional to the sum

∑
i

1
Ci

whereCi is the chord length. Another contribution

is proportional to
∑

i
1

R cos3 φ whereR is the radius of curvature of the wall andφ is the
angle between the orbit and the normal to the wall at the incident point . When a caustic
is close to a hard wall the typical chord length will be small and so will cosφ. Thus, the
correction to the leading-order contribution of periodic orbits will diverge and the semiclassical
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quantization may fail. Therefore, we expect that semiclassical methods will give poor results
for contributions of orbits that are adjacent to a hard wall. For chaotic systems, because of
ergodicity, a typical orbit will not have a large fraction of chords near the wall of a billiard,
therefore, this correction will not be dominant. One can expect that in such systems the
semiclassical error will fluctuate around some average without extreme deviations.
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Appendix A. The leading-order quantization condition

In this appendix we use the ‘EBK quantization’ in order to obtain the semiclassical quantization
condition (22). The method uses the classical momenta for quantization of action integrals.
This result is not new but it may help to clarify the form of the semiclassical limit that was
used in the systematic WKB expansion. Our system is aD-dimensional spherical billiard and
it is convenient to describe it using a hyperspherical coordinate system. The transformation
between the hyperspherical and Cartesian coordinates is

xD = r cosξD−1

xD−1 = r sinξD−1 cosξD−2

xD−2 = r sinξD−1 sinξD−2 cosξD−3 (A.1)
...

...

x1 = r sinξD−1 sinξD−2 . . . sinξ2 sinξ1.

It is easy to show that the Hamiltonian of a free particle in spherical coordinates is

HD = 1

2m

(
p2
r +

p2
ξD−1

r2
+

p2
ξD−2

r2 sin2 ξD−1
+

p2
ξD−3

r2 sin2 ξD−1 sin2 ξD−2
+ · · · + p2

ξ1

r2
∏D−1
i=2 sin2 ξi

)
.

(A.2)

This Hamiltonian satisfies the Staeckel conditions [22], therefore Hamilton’s characteristic
function is completely separable, namely,

W(q) =
∑
i

Wi(qi). (A.3)

The Hamilton–Jacobi equation in these coordinates is(
∂Wr

∂r

)2

+
1

r2

[(
∂WξD−1

∂ξD−1

)2

+
1

sin2 ξD−1

[(
∂WξD−2

∂ξD−2

)2

+
1

sin2 ξD−2

[
· · ·
[(

∂Wξ2

∂ξ2

)2

+
1

sin2 ξ2

(
∂Wξ1

∂ξ1

)2
]
· · ·
]]]
= 2mE. (A.4)
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The brackets in this equation must be constants of motion since they depend upon different
variables. Since the constants are positive we defineα2

i as the value of theith brackets. We
can write the Hamiltonian as

H = p2
r

2m
+

L2

2mr2
(A.5)

whereL = αD−1 is the generalized angular momentum. We calculateαD−1 by calculating the
actions related to the angular variables. The first coordinate is cyclic, thus

S1 = 2πα1. (A.6)

All the other actions are similar and are computed in [22]:

Si =
∮
∂Wξi

∂ξi
dξi =

∮ √
α2
i −

α2
i−1

sin2 ξi
dξi = 2π(αi − αi−1). (A.7)

The WKB quantization is done by quantization of the actionsSi = 2πh̄(li + γi/4) whereγi is
the Maslov index of the action. Now the angular momentum is given by

L = αD−1 = 1

2π

∑
i

Si = h̄
(D−1∑

i=2

(
li +

1

2

)
+ l1

)
= h̄

(
l +

D − 2

2

)
. (A.8)

This is just the semiclassical angular momentumLsc.
One additional quantization is needed in order to obtain the energy levels

Sr =
∮
pr dr = 2

∫ R√
L2

2mE

√
2mE − L

2

r2
dr (A.9)

whereR is the radius of the hyperspherical billiard. Here the Maslov index is 3, since the
contribution from the turning point is 1 and the hard wall contributes 2. A straightforward
calculation leads to the quantization condition:

Sr = 2

[√
2mER2 − L2 − L arccos

√
L2

2mER2

]
= 2πh̄

(
n +

3

4

)
. (A.10)

Introducingν andz, and identifyingL ≡ Lsc, the equation takes the form

ν

[√
z2 − 1− arccos

(
1

z

)]
− π

4
= π

(
n +

1

2

)
(A.11)

which is simply (22).

Appendix B. Calculation of the second-order contribution to the quantization condition

The objective of this appendix is to calculate the contour integral (24). The contour must
encircle the turning point atrmin and also the pointr = R that represents the hard wall. It
is convenient to compute this integral by taking the contour infinitesimally close to the real
line. The parts of the contour that are parallel to the realr-axis give the same real contribution,
which can be computed directly. Calculation of this integral reveals that the classical turning
point gives an infinite contribution. The part of the contour that encircles the turning point
also gives an infinite contribution, and the sum of all the terms is finite.

The standard way to deal with integrals of this kind is to integrate and differentiate using a
suitable parameter as a variable (usually the energy). Here, one first integrates with respect to
the energy. The number of integrations is such that the contribution from the turning point to
the contour integral in the complexr plane converges. Then the contour integral is computed.
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The last step is to differentiate with respect to the energy to obtain the desired result. For this
purpose (23) is written in the form

σ ′2 =
3L2

sc

4mr3

∂

∂E

1

(2mEr2 − L2
sc)

1/2
− 5L4

sc

24m2r5

∂2

∂E2

1

(2mEr2 − L2
sc)

1/2
− 1

8r
√

2mEr2 − L2
sc

.

(B.1)

Now each term will be treated separately. Integration of the first one results in

I1 =
∫ R√

L2
sc

2mE

3L2
sc

2mr3

dr√
2mEr2 − L2

sc

= 3

4mR2

√
2mER2 − L2

sc −
3E

2Lsc
arcsin

(√
L2
sc

2mER2

)
+

3E

2Lsc

π

2
. (B.2)

Differentiation with respect toE and change of variable fromE to z gives

∂I1

∂E
= 3

2Lsc

1√
2mER2

L2
sc
− 1

+
3

2Lsc
arccos

(√
L2
sc

2mER2

)

= 3

2Lsc

(
1√
z2 − 1

+ arccos

(
1

z

))
. (B.3)

The next term can be treated in a similar manner,

I2 =
∫ R√

L2
sc

2mE

5L4
sc

12m2r5

dr√
2mEr2 − L2

sc

. (B.4)

Substitution ofy = 1
r

helps to perform the integral and to obtain

I2 = 5L2
sc

12m2

√
2mER2 − L2

sc

(
3mE

4L2
scR

2
+

1

4R4

)
+

5E2

8Lsc

π
2
− arctan

 1√
2mER2

L2
sc
− 1

 .
(B.5)

This term has to be differentiated twice with respect toE, and then the variableE should be
replaced byz. After some manipulations the contribution of this term is found to be

∂2I2

∂E2
= 5

4Lsc

1√
z2 − 1

− 5

12Lsc

1

(z2 − 1)3/2
+

5

4Lsc
arccos

(
1

z

)
. (B.6)

The third term is simply

I3 =
∫ R√

L2
sc

2mE

dr

4r
√

2mEr2 − L2
sc

= 1

4Lsc
arccos

(
1

z

)
. (B.7)

And the final result is∮
σ ′2 dr = ∂I1

∂E
− ∂

2I2

∂E2
− I3 = 1

4Lsc

1√
z2 − 1

+
5

12Lsc

1

(z2 − 1)3/2
(B.8)

which reduces to (24).
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Appendix C. Exact generalized angular momentum eigenvalues in WKB

The WKB series for the angular momentum inD = 3 dimensions were constructed by
Salasnich and Sattin [19]. Summation of this series leads to the correct form of the quantum
angular eigenvalues, namely,(l + 1)l. Here this result is generalized to the angular momentum
in arbitrary dimensionD.

The first step is to compute the form of the Laplacian in hyperspherical coordinates. Then,
by separation of variables an equation relating the generalized angular momentum operator to
its projection on aD − 1 dimensional space is found. We assume that the Laplacian is of the
form

1 = ∂2

∂2r
+
D − 1

r

∂

∂r
+

1

r2
1s
D (C.1)

where1s
D is the angular part that does not depend on the radial variable. We use induction

in the number of degrees of freedom to prove that the Laplacian indeed has this form. First,
one should note that forD = 2 and 3 this assumption holds. Assume it holds for aD − 1
dimensional system and add an additional Cartesian coordinatexD. The Laplacian is now

1 = ∂2

∂2xD
+1D−1 (C.2)

where1D−1 is the Laplacian in the space of the coordinatesx1, x2, . . . , xD−1. Transforming
x1, x2, . . . , xD−1 to hyperspherical coordinates and using the induction assumption we obtain

1 = ∂2

∂2xD
+
∂2

∂2r
+
D − 2

r

∂

∂r
+

1

r2
1s
D−1. (C.3)

The transformation to hyperspherical coordinates involves only the two coordinatesr and
xD. All of the angular coordinates will not change and, therefore, neither will1s

D−1. To
transform to theD-dimensional hyperspherical coordinates one substitutes

xD = R cosθ

r = R sinθ.
(C.4)

The computation of the Laplacian is straightforward and leads to

1 = ∂2

∂2R
+
D − 1

R

∂

∂R
+

1

R2
1s
D (C.5)

where

1s
D =

∂2

∂2θ
+ (D − 2) cotθ

∂

∂θ
+

1

sin2 θ
1s
D−1 (C.6)

is theD-dimensional angular momentum operator. Since the systematic high-order WKB
expansion works only for ordinary differential equations we assume that the exact form of the
eigenvalues of the angular momentum in lower dimensions is known. The equation connecting
eigenvalues of angular momentum inD andD − 1 dimensions is obtained by separation of
variables

T ′′(θ) + (D − 2) cot(θ)T ′(θ)− (m +D − 3)m

sin2(θ)
T (θ) = −λ2T (θ) (C.7)

whereT (θ) is the eigenfunction for the eigenvalueλ2, whilem(m +D − 3) is the eigenvalue
of1s

D−1. It is justified by induction in what follows (see (C.11)). This is the generalization of
equation (4) in [19]. The computation follows [19] with only minor changes. Instead of (5)
in [19] one substitutes

T (θ) = F(θ)

(sinθ)η
(C.8)
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whereη = D−2
2 . After some manipulations and substitution ofx = θ + π

2 one obtains

−F ′′(x) +
U

cos2(x)
F (x) = EF(x) (C.9)

that is (7) of [19]. However, the values of the parameters are different. HereE = λ2 + η2 and
U = m(m+D− 3)− η(1− η). The WKB expansion of (C.9) is developed in [14,19] for any
order. The quantization condition is given by a series which is then summed. This results in

√
E − 1

2

√
1 + 4U2 = n + 1

2 (C.10)

but here
√

1 + 4U2 = 2(m + D−3
2 ). Substitution ofU andE leads to

λ2 = (n +m)(n +m +D − 2). (C.11)

This is indeed the correct result for the generalized angular momentum eigenvalues. The
semiclassical eigenvalue is found from (C.10) assumingE ' λ2, leading toλ ' n +m + D−2

2 .
Identifying l = n +m results in (A.8).
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